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Extended Data Fig. 3. Fitting all parameters simultaneously for unilateral FOF inactivation data confirms the same 
conclusions as previously found fitting only two parameters at a time. (a) Psychometric curves for control and unilateral FOF 
inactivation data. The black line is the model fit to the control data. The purple circles with error bars are experimental data from 
unilateral FOF inactivation sessions, and indicate fraction of Contra choice trials (mean ± binomial 95% conf. int.) across trial 
groups, with different groups having different #Contra ,  #Ipsi clicks. The purple line is the psychometric curve generated by the 
post-categorization bias model. (b) The 2-dimensional normalized likelihood surface. The peak of the likelihood surface for the 
inactivation data is significantly different from control for post-categorization bias (from 0.044 to 0.4933). Input gain bias (which 
is parametrized so that 0.5 means no side bias) ris not significantly different from its control value. (c) Reverse correlation 
analyses showing the relative contributions of clicks throughout the stimulus in the rats’ decision process. The thick dark red and 
green lines are the means ± std. err. across trials for contralateral and ipsilateral trials. Thin light red and green lines are the 
reverse correlation traces generated by extended model.  
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Extended Data Fig. 4. Firing rate modulation of striatal neurons. (a-c) Examples of three striatal neurons that did not exhibit 
significant modulation in their firing rates during stimulus presentation (Left column) but did show movement-related firing rate 
modulation (right column). (d-e) Examples of three striatal neurons that exhibited modulation of their firing rate during stimulus 
presentation and exhibited side-selective responses.  This later class of neurons are the subject of our analyses in this manuscript.  
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Extended Data Fig. 5. Computing tuning curves that describe the relationship between neural activity and accumulated 
evidence. (a) One trial for an example neuron from the striatum. The left side shows the firing rate of the neuron, and the 
right side shows the behavioral model’s estimate of the evolution of the distribution of the accumulator value, a (color represents 
probability density). Time runs vertically and is aligned to stimulus onset minus neural response lag (see methods). ±B 
correspond to the ‘sticky’ decision-commitment bounds on evidence accumulation. (b) Building a map of firing rate versus 
accumulator value. At a given time point (here, t = 0.3 s), we copy the distribution of a (blue box) to a vertical position given by 
the firing rate of the neuron. (c) Continuing with the same time point, we add a slice from every recorded trial. This produces the 
full joint distribution P(r,a | t = 0.3), the probability of seeing firing rate r and accumulator value a at time t = 0.3 s. (d) The 
accumulator values are binned, and the mean firing rate is computed for each bin to generate a neural tuning curve as a function 
of the accumulator value a. (e) The process is repeated for each time point. Each vertical slice corresponds to a tuning curve, with 
the one from d shown above the blue arrowhead.	 
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